
A special simplex in the state space for entangled qudits

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 7919

(http://iopscience.iop.org/1751-8121/40/28/S03)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/28
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 7919–7938 doi:10.1088/1751-8113/40/28/S03

A special simplex in the state space for entangled
qudits

Bernhard Baumgartner, Beatrix Hiesmayr and Heide Narnhofer

Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5, A-1090 Vienna, Austria

E-mail: Bernhard.Baumgartner@univie.ac.at, Beatrix.Hiesmayr@univie.ac.at and
Heide.Narnhofer@univie.ac.at

Received 13 October 2006, in final form 6 February 2007
Published 27 June 2007
Online at stacks.iop.org/JPhysA/40/7919

Abstract
The focus is on two parties with Hilbert spaces of dimension d, i.e. ‘qudits’. In
the state space of these two possibly entangled qudits an analogue to the well-
known tetrahedron with the four qubit Bell states at the vertices is presented.
The simplex analogue to this magic tetrahedron includes mixed states. Each
of these states appears to each of the two parties as the maximally mixed state.
Some studies on these states are performed, and special elements of this set are
identified. A large number of them are included in the chosen simplex which
fits exactly into conditions needed for teleportation and other applications.
Its rich symmetry—related to that of a classical phase space—helps to study
entanglement, to construct witnesses and perform partial transpositions. This
simplex has been explored in detail for d = 3. In this paper, the mathematical
background and extensions to arbitrary dimensions are analysed.

PACS numbers: 03.67.Mn, 03.67.Hk

1. Introduction

Entanglement, a non-classical essential feature of quantum theory, was first recognized in
1935 in connection with paradoxes. Studying it with mathematical accuracy began in 1964,
introducing the Bell states. With the new era of proposed applications in teleportation, quantum
computing and quantum communication [BW92, B93], it became necessary to use the Bell
basis of four ‘magic Bell states’ describing the qubit. Now, in the process of extending the
concepts to systems with Hilbert spaces of dimension greater than 2, one faces the practical
task of defining analogous sets of states. The presentation of all possible ideal schemes in
[W01] reveals a large field of structures that we can choose from.

One item that fits into those schemes is presented in this paper. We were motivated to
study it mainly out of curiosity on the theoretical side. It has a rich structure of symmetries
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which enable deep concrete investigations on the location of the border between entangled
and separable states. (Compare [VW00].) It would be no surprise if its mathematical beauty
was reflected in practical application.

In this paper, we focus on two parties with Hilbert spaces of dimension d, i.e. ‘qudits’. For
these two possibly entangled qudits we construct an analogue to the well-known tetrahedron
with four mutually orthogonal Bell states at the vertices [HH96]. This magic tetrahedron
includes mixed states, inside lies an octahedron of separable states. Each of these states
appears to each of the two parties as the maximally mixed state of its qubit. Considering the
duality between maps and states [ZB04] these states are related to bistochastic maps [AU82]
(but only for bipartite systems). We make some remarks on this duality in the concluding
section 9. Now, also for the qudits one might prefer states with this property. We call it locally
maximally mixed. For qubits, any such LMM state can be considered as an element of the
tetrahedron [BNT02], but for d � 3 the analogue statement is no longer true. So we perform
some studies on LMM states in section 2 and identify special elements of this set. In the
following sections we then recognize a large number of these special states as included in our
chosen subspace of LMM.

For the qudit pair we define and study a special simplex (‘generalized tetrahedron’) W .
It has d2 pure states at the vertices, with specified relations between them. Its rich symmetry
helps us to study entanglement, and it fits exactly into the conditions needed for teleportation
and dense coding as stated in [W01]. We explored this magic simplex for d = 3 [BHN06]. In
this paper, we bring a detailed analysis of the mathematical background. This enables us to
extend the study to higher dimensions.

Choose some basis {|s〉} in each factor and define a ‘Bell state’, i.e. a maximally entangled
pure state, in the Hilbert space C

d ⊗ C
d with the vector

|�0,0〉 = 1√
d

∑
s

|s〉 ⊗ |s〉. (1)

On the first factor in the tensorial product we consider actions of the Weyl operators defined
as

W̌k,�|s〉 = wk(s−�)|s − �〉, (2)

w = e2π i/d , (3)

with the identity

|s − �〉 ≡ |s − � + d〉. (4)

The actions of the Weyl operators produce mutually orthogonal Bell state vectors

|�k,�〉 = (W̌k,� ⊗ 11)|�0,0〉. (5)

The set of index pairs (k, �) is a finite discrete classical phase space: � denotes the values
for the coordinate in ‘x-space’, k the values of the ‘momentum’. Remarks on the relation
to the physics of the Heisenberg–Weyl quantization we have made for d = 3; details on the
mathematics follow in section 4. To each point in this space is associated the density matrix
for the Bell state, the projection operator

Pk,� = |�k,�〉〈�k,�|. (6)
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The mixtures of these pure states form our object of interest, the magic simplex

W =
{∑

ck,�Pk,�

∣∣∣∣ck,� � 0,
∑

ck,� = 1

}
. (7)

As a geometrical object W is located in a hyperplane of the d2-dimensional Euclidean
space

{
A = ∑

ak,�Pk,�

∣∣ak,� ∈ R
}

equipped with a distance relation
√

Tr(A − B)2. Specifying

the origin A = 0, it is also equipped with the Hilbert–Schmidt norm
√

A2, and the inner product
Tr(AB) = ∑

ak,�bk,�. All this is embedded in the d4-dimensional Hilbert–Schmidt space of
Hermitian d2 × d2 matrices. We use this Euclidean geometry for ease of calculations.

The main goal in this paper is the exploration of the borders of SEP, i.e. the set of separable
states. We find that the structure of the subset SEP ∩ W , the analogue to the octahedron of
bipartite qubits, is not quite simple. It is not a polytope; but a rather detailed study is enabled by
the rich symmetry of the simplex W . Using part of it, we easily determine first two polytopes
giving an inner and an outer fence to the border of SEP. These results, among others, appear
in sections 3 and 4.

Symmetry is then studied in detail in section 5. It also simplifies performing the partial
transpositions of the states in W . This is discussed in section 7. So we get a closer
approximation to SEP ∩ W by studies on PPT, that is the set of density matrices remaining
positive after partial transposition. Here we refer to the Peres criterion [P96] which implies that
SEP is a subset of PPT. Furthermore, the partial transposition maps PPT ∩ W into PPT ∩ Ŵ ,
where Ŵ is another convex subset of LMM, also defined in section 7. The partial transposition
maps SEP onto itself, so the cases of bound entanglement detected in W are also cases for
bound entanglement in Ŵ .

Last, but not least, the symmetry of W can be exploited as the symmetry of the set of
witnesses [T00] needed there. Here, in section 6, we use the mathematics of convex cones
and their duals. It helps to exactly determine the borderlines of SEP. This has been done
in [BHN06] for d = 3. Extensions to studies for higher dimensions will follow (work in
progress).

This study follows two aims. In the main task of investigations the special simplex
is constructed and its symmetries are stated. Using these symmetries, some details in the
structure concerning entanglement are explored. In following the second trail we check not to
have overlooked anything: the symmetry group is maximal, the polytopes are optimal. The
proofs of having ‘best possible’ results afford some mathematical subtlety. We present these
subtle investigations in section 8.

Various mathematical branches are used: theories of numbers, groups, convex sets,
matrices and Hilbert spaces. But only some basic facts are needed, to be found in
any introduction or encyclopaedia, as [Sch86, V64, A42, W06]. One side effect, which
unfortunately makes some pain, is the frequent switching of the mathematical points of view.
Being too strict on the reference to the context would make notations cumbersome and difficult
to follow. We try to avoid an overburdening with symbols. We refer, for example, to the states
with the same letters as we use for the density matrices representing them. But we are strict
on not confusing Hilbert space vectors with states. Big Greek letters denote elements of the
total Hilbert space, small letters, mostly in the environment | 〉, are used for elements of C

d .
Moreover, we simplify the notations, omitting the sign for the tensor product concerning

the two parties, and write, e.g., |ϕ, s〉 for an element of C
d ⊗ C

d instead of |ϕ〉 ⊗ |s〉. Our
unitary operators U,V,W that occur in this work acting on the global Hilbert space are all of
product form. They act locally as Ǔ , V̌ , W̌ on the first factor, and as Ũ , Ṽ , W̃ on the second
factor. U |ϕ,ψ〉 = |Ǔϕ, Ũψ〉. Mostly Ũ = 11, with exceptions in section 5.
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2. LMM states

Elements of LMM are the states ρ on the Hilbert space HA ⊗ HB = C
d ⊗ C

d which appear
locally to each of the single parties as maximally mixed1. The partial trace in one factor gives
the maximally mixed state ω on the other side:

ρA := TrBρ = ωA := 1

d
11A, ρB := TrAρ = ωB := 1

d
11B. (8)

We identify special types of LMM states: its pure states, isotropic states, Werner states
and maximally exposed elements of SEP ∩ LMM.

The pure LMM states for qubits are known as the ‘Bell states’. We extend this naming
to each one of the pure LMM states of qudits. The single Bell states for fixed d are all
unitarily equivalent, involving local unitary transformations: Consider the pair �,� of Bell
state vectors. For Schmidt decomposition, we choose a preferred basis {|s〉} in HB . Then
there are two different bases |ψs〉 and |ϕs〉 in HA, such that

|�〉 = 1√
d

∑
s

|ψs, s〉, |�〉 = 1√
d

∑
s

|ϕs, s〉. (9)

|�〉 is mapped to |�〉 by extension of the local unitary operator

Ǔ =
∑

s

|ϕs〉〈ψs |. (10)

Mixtures of a Bell state � with the global maximally mixed state

ω = 1

d2
11 (11)

define the isotropic states (1 − α)ω + α|�〉〈�|. Again all the isotropic states with the same α

are unitarily equivalent.
Other special LMM states are the lines of Werner states, related to the lines of isotropic

states by PT, that is Partial Transposition. See [VW00] for the appropriate ranges of the
parameters α and other details. They are also all equivalent. We need no special check of their
belonging to LMM. There is the general fact:

Lemma 1. The LMM property (8) is preserved under partial transposition.

Proof. Equation (8) is equivalent to the statement that for each ϕ ∈ C
d and each basis {ψt }∑

t

〈ϕ,ψt |ρ|ϕ,ψt 〉 = ‖ϕ‖2/d. (12)

We write this as Tr ρQ = ‖ϕ‖2/d with Q := ∑
t |ϕ,ψt 〉〈ϕ,ψt |. The PT operator in the

Hilbert–Schmidt space is symmetric, i.e. Tr(PT(ρ) · Q) = Tr(ρ · PT(Q)). Calculation of PT
is done in the preferred basis |s〉; the expansion |ϕ〉 = ∑

s ϕs |s〉 gives

PT(Q) =
∑
s,r,t

ϕsϕ
∗
r PT(|s, ψt 〉〈r, ψt |)

=
∑
s,r,t

ϕsϕ
∗
r |r, ψt 〉〈s, ψt | =

∑
t

|ϕ̂, ψt 〉〈ϕ̂, ψt |, (13)

with |ϕ̂〉 = ∑
r ϕ∗

r |r〉. The complex conjugation does not change the norm and (12) holds for
PT(ρ). �
1 In the community working with operator algebras, such a maximally mixed state is known as tracial state.
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The Werner states do not only have special symmetries, they have the property of attaining
the minimal possible distance (see [GB02]) to the maximally mixed state ω when they are at
the border between SEP and the entangled states. We conjecture that they are the only LMM
states with this property. What we can show easily is the

Lemma 2. If an LMM state at the border between PPT and non-PPT states has the minimal
border distance to ω, which is 1/d

√
d2 − 1, then it is a Werner state.

Proof. Performing PT on the density matrix ρ of this state we get a density matrix σ at the
border of PPT ∩ LMM to non-positive matrices. The matrices with minimal distance at that
border have the form σ = (11 − P)/(d2 − 1), with P being a projector belonging to a pure
state. Pure LMM states are Bell states, so σ is isotropic and ρ = PT(σ ) is a Werner state. The
Euclidean distance squared is easily calculated as

Tr(ρ − ω)2 = Tr(σ − ω)2 = Tr σ 2 − 1

d2
= 1

d2(d2 − 1)
. (14)

�

W does not contain Werner states if d � 3, but Ŵ does, see section 7.
A third kind of special LMM states appears in both W and Ŵ: the separable states with

the largest possible distance between ω and SEP ∩ LMM.

Theorem 3. The maximal distance of a σ ∈ SEP ∩ LMM to ω is
√

d − 1/d. It is attained if
and only if the density matrix σ has the form

σ = 1

d

∑
s

|ϕs, ψs〉〈ϕs, ψs |, (15)

where both ϕs and ψs are bases for C
d .

Proof. The first condition, σ ∈ SEP, is fulfilled iff σ can be represented as∑
α

λα|ϕα,ψα〉〈ϕα,ψα| (16)

with λα > 0 ,
∑

α λα = 1 and normed vectors ϕα,ψα .
The second condition, σ ∈ LMM, implies that ∀ϕ,∀ψ with norm one

〈ϕ,ψ |σ |ϕ,ψ〉 �
∑

j

〈ϕ,ψj |σ |ϕ,ψj 〉 = 〈ϕ|σA|ϕ〉 = 1

d
, (17)

where we considered some basis ψj containing the given ψ . Applying (17) to the vectors
appearing in (16) gives

Tr σ 2 =
∑

α

λα〈ϕα,ψα|σ |ϕα,ψα〉 �
∑

α

λα

1

d
= 1

d
. (18)

This proves the first statement about the maximal distance, since ‖σ − ω‖2 = Tr σ 2 − 1/d2.
To prove the second statement observe that the inequality (17) turns to an equality iff ∀ψ⊥

with 〈ψ⊥|ψ〉 = 0 the equality 〈ϕ,ψ⊥|σ |ϕ,ψ⊥〉 = 0 holds. The same is true with the roles
of the two sides interchanged, that is ∀ϕ⊥ with 〈ϕ⊥|ϕ〉 = 0 one has 〈ϕ⊥, ψ |σ |ϕ⊥, ψ〉 = 0.
So one can start diagonalizing the matrix σ . One begins with one pair of vectors appearing in
(16), say α = 0:

σ = 1

d
|ϕ0, ψ0〉〈ϕ0, ψ0| +

d − 1

d
σd−1. (19)
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The matrix σd−1 is a normalized density matrix in the LMM ∩ SEP with lower dimension,
acting on C

d−1 ⊗ C
d−1. This can easily be seen by (d − 1)TrBσd−1 = dTrBσ − |ϕ0〉〈ϕ0| =

11A −|ϕ0〉〈ϕ0| = (d −1)11A,d−1 and 〈ϕ⊥, ψ⊥|σd−1|ϕ⊥, ψ⊥〉 = d/(d −1)〈ϕ⊥, ψ⊥|σ |ϕ⊥, ψ⊥〉.
Now one may proceed inductively, expanding σd−1 in the form (16)—generally with new
vectors—diagonalizing (d − 1)σd−1 = |ϕ1, ψ1〉〈ϕ1, ψ1| + (d − 2)σd−2 and so on. �

Each one of these maximally exposed SEP ∩ LMM states is in unique correspondence
to a pair of bases in the Hilbert spaces of the parties and a one-to-one mapping between
them. Each one can be represented as a mixture of d Bell states appearing in some W . For
example, one may use the bases characterizing σ as stated in theorem 3, to construct a simplex
W: put them into definition (1), |�0,0〉 = 1√

d

∑
s |ϕs, ψs〉, construct the Pk,0 and represent

σ = ∑
k Pk,0/d. But this representation is not unique. More about this is presented in section

4. PT maps this set of maximally exposed states onto itself, so these states appear in Ŵ also.

3. Subsets of LMM

Let us proceed and look at subspaces of LMM. Most important are the Bell states
appearing in the chosen subspace. Any set of d2 mutually orthogonal Bell states Pα—
orthogonality of the Hilbert space vectors 〈�α|�β〉 = δα,β is in this case equivalent to
the orthogonality of the density matrices in the Euclidean space Tr PαPβ = δα,β—spans a
maximal simplex. Each Bell state comes with an optimal witness, a hyperplane Bα defined
as Bα := {ρ : Tr ρ(Pα − 11/d) = 0}. These d2 hyperplanes Bα , together with the d2

hyperplanes Aα := {ρ : Tr ρPα = 0} containing the faces of the simplex, define an enclosure
polytope. Outside of it are only entangled states. The projectors Pα generate a maximal
Abelian subalgebra of operators acting on H. So these conditions alone bring already some
insight, but they still allow for many different choices of an LMM subspace. They are not all
equivalent. The geometric symmetry of the enclosure polytope, the same symmetry as that of
the simplex, is deceptive: SEP must be inside, but the relations of its detailed geometry to the
set of pure states in the chosen subspace depend on their algebraic relations. The single Bell
states are equivalent, but already pairs of orthogonal Bell states fall into different classes of
pairs if d � 4. Enter spectral theory: each class is characterized by the spectrum of the local
unitary operators identified in (10) connecting the pair. Orthogonality of the Bell state vectors
implies Tr U = 0. Being interested only in the intertwining relation

U |�〉〈�|U † = |�〉〈�| (20)

we are free to choose a phase factor for U such that one of its eigenvalues is equal to 1.
The condition Tr U = 0 specifies the rest of the spectrum only for qubits and qutrits. For
d � 4 there are various possibilities, defining different classes of equivalent pairs: unitary or
antiunitary local mappings of one pair onto the other can be applied to the interwiners U. So
their spectra are either unchanged or complex conjugated and rotated. This characterizes the
classes.

To choose special sets of Bell states an extra criterion which a theoretician likes to pose
is that the intertwining operators form a unitary group, allowing for multiplication of any two
of them. This gives a strong restriction on their spectra. Enter number theory:

Theorem 4. If {Un} is a group of intertwiners between mutually orthogonal Bell states,
then, with an appropriately chosen overall phase factor, U has eigenvalues e2π im/b, where
0 � m � b − 1, and b is either a divisor of d or equal to d. Considering intertwiners acting
as U = Ǔ ⊗ 11 on HA only, the multiplicity of each eigenvalue of Ǔ is d/b.
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Proof. The Euclidean space of density matrices has finite dimension, the set of orthogonal
projectors onto Un|�〉 is finite, less than d2, and there exists some smallest natural number
b, such that Ub = 11 · phase factor. We choose the phase factor for U in such a way that we
have Ub = 11. In the following, we consider U acting on HA only. Since Tr Ub = d Tr Ǔ b,
the orthogonality of the Bell states implies, as stated before (20),

Tr Ǔn = dδn,0 for 0 � n � b − 1. (21)

Ǔ b = 11 implies that the eigenvalues of Ǔ are elements of {e2π im/b, 0 � m � b − 1}. Denote
the multiplicities as f (m). Then equation (21) can be read as a formula for the Fourier
transform of f (m). The inverse transform gives

f (m) = 1

b

b−1∑
n=0

e2π imn/b Tr Ǔn = d

b
. (22)

This number has to be an integer. �

Corollary 5. Any group of unitary intertwiners between mutually orthogonal Bell states
contains finite cyclic subgroups. Each one is of some order b, where either b = d or b is a
divisor of d.

It follows that there are not many different possibilities for structures of such groups. Our
choice is possible for all d, whether prime or not.

4. Groups and the classical phase space for the magic simplex

Letters of the set {j, . . . , t} denote numbers 0, 1, . . . , d − 1. They are considered as elements
of Zd := Z/dZ. Calculations with them are to be understood as ‘modulo d’.

Intertwiners are the Weyl operators Wk,� = W̌k,� ⊗ 11 presented in section 1:

Wk,�Pp,qW
†
k,� = Pp+k,q+�. (23)

The Weyl operators obey the Weyl relations

Wj,�Wk,m = wk�Wj+k,�+m, (24)

W
†
k,� = W−1

k,� = wk�W−k,−�, (25)

W0,0 = 11. (26)

They form the Heisenberg–Weyl group W. More precisely, W is a finite discrete subgroup
of the doubly infinite continuous Heisenberg group, compare [W06]. Group elements
are wmWk,�. The phase factors {wm11} form an Abelian normalizer; the factor group is
W/Zd

∼= Zd ×Zd . This can be considered in the sense originally meant by Weyl [W31] as the
quantization of classical kinematics. The kinematics of the Galilei group is represented in the
discrete classical phase space as Zd × Zd , generated by the global boost (p, q) → (p + 1, q)

and the global space translation (p, q) → (p, q + 1).
The classical phase space T := {(p, q)} is a lattice on a two-dimensional torus. It has a

‘linear’ structure—multiplication by constants and addition is always done in the ring Zd—
and it is a symmetric space for the Heisenberg–Weyl group: we define the action of W on T

by identifying each phase space point (p, q) with the projector Pp,q and use equation (23).
Moreover, we identify non-negative normalized densities

{
cp,q � 0,

∑
cp,q = 1

}
with the
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elements
∑

cp,qPp,q of W . Special use is made of equidistributions over subsets Q ⊂ T and
the corresponding density matrices

ρQ :=
∑

(p,q)∈Q

Pp,q/|Q|. (27)

Now the group structure of W gives a first insight into the structure of SEP ∩ W . Each cyclic
subgroup

{
Wn

k,�

}
acting on a point (p, q) of T generates a line {(p + nk, q + n�)}.2 These

lines, for d prime, have been identified in [N06] as corresponding to separable states. If there
are non-cyclic Abelian subgroups—which may be the case if d is not prime—they generate
sublattices, each one with at most two independent basis vectors.

Proposition 6. Each line or sublattice with d points is generated by an Abelian subgroup of
W and corresponds to a maximally exposed state in SEP ∩ W .

Proof. Consider a sublattice Q with d points. A lattice in two dimensions can be represented
with two basis vectors. So we can represent

Q = {(b + jµ + kν, q + �µ + mν), 0 � µ � b − 1, 0 � ν � c − 1, b · c = d}. (28)

We include the cases b = d, c = 1 representing lines. For the matrices the representation is

ρQ = 1

d

∑
µ

∑
ν

UµV ν |�p,q〉〈�p,q |U−µV −ν (29)

where U = eiγ Wj,�, V = eiδWk,m, with the phase factors chosen, if necessary, such that
Ub = V c = 11. Each one of the smaller exponents gives other elements of W; so

TrAUµV ν = δµ,0δν,0 · d. (30)

For the sublattice the Weyl relations (24) imply

U · V · U † · V † = wk�−jm11, (31)

and the exponent k�− jm is the oriented area of a unit cell of Q. The union of all d cells spans
all of T, which has area d2, once or several times; so (k� − jm) · d = z · d2, with some z ∈ Z.
It follows that k� − jm ≡ 0, the rhs of (31) is 11, so U and V commute. This allows for a
common spectral decomposition

Ǔ =
d/b−1∑
s=0

d/c−1∑
t=0

f (s, t) e2π is/b|ϕs,t 〉〈ϕs,t |,

V̌ =
d/b−1∑
s=0

d/c−1∑
t=0

f (s, t) e2π it/c|ϕs,t 〉〈ϕs,t |.
(32)

We get the multiplicity function f , in a way analogous to the proof of theorem 4. Here we
use the Fourier transform in two variables and equation (30):

f (s, t) = 1

b · c

∑
µ,ν

exp(2π i(µs/b + νt/c)) Tr ǓµV̌ ν = 1. (33)

The diagonalizing basis ϕs,t in HA is now used for a Schmidt decomposition of the Bell state
vector:

|�p,q〉 = 1√
d

∑
s,t

|ϕs,t , ψs,t 〉, (34)

2 Warning: these lines do not for each d fulfil the conditions for a ‘line’ in the sense of affine geometry. See also
[B04].
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with ψs,t as the appropriate basis in HB . Inserting (32)–(34) into (29), the summation over
the phase factors brings some δ factors, reducing the summations. The result is

ρQ = 1

d

∑
s,t

|ϕs,t , ψs,t 〉〈ϕs,t , ψs,t |. (35)

This expression for ρQ is exactly as it is used for the matrices in theorem 3. �

SEP is a convex set and the separable states ρQ identified in proposition 6 can be considered
as the extreme points of a kernel polytope which is a subset of SEP ∩ LMM. These ρQ appear
also as extreme points of the enclosure polytope, but do not cover all of them if d � 3. For
the vertices of the enclosure polytope the set Q can be any subset with d elements of T; for the
kernel polytope this set Q has to be a line or a sublattice. That all the other sets Q correspond
in fact to entangled states is proven in theorem 14.

Theorem 7. The number of lines and sublattices with d points in T is

N(d) = d ·
[
1 + d +

∑
b
]
,

where the sum runs over all b which are proper divisors of d.

Proof. The number in square brackets must be the number of lines and lattices Q of order d,
each containing the point (0, 0) ∈ T. All the others can be found by translations; and doing
all d2 translations gives each line and each lattice of order d in d-fold multiplicity.

We give a list of these Q containing (0, 0):

(a) {(s, 0)|0 � s � d − 1}, one line.
(b) {(k · s, s)|0 � s � d − 1}, d lines, one for each k ∈ [0, . . . , d − 1].
(c) {(µ · b + ν · b, ν · d/b)|0 � µ � d/b − 1, 0 � ν � b − 1}, b sublattices, one for each

ν ∈ [0, b − 1], with b a proper divisor of d. �

We remark that some of the sublattices listed in (c) can also be considered as lines. But not
all of them, if d is not a simple product of prime numbers but also contains their squares or
higher powers. One example is d = 4, b = 2, ν = 0.

5. Symmetries of W

We are looking for symmetries compatible with the entanglement, just to make the
investigations simpler. We do not pose detailed restrictions, no measure for entanglement
is needed. Just the following, physically motivated characterization is sufficient:

Definition 8. A mapping L : W → W is E-compatible (i.e. compatible with entanglement),
iff

(a) Bell states are mapped to Bell states,
(b) L is mixture preserving

L(αρ + (1 − α)σ) = αL(ρ) + (1 − α)L(σ),

(c) SEP ∩ W is mapped onto itself.
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Now if we have a local unitary transformation ρ → UρU †, the separability is preserved. Also
conditions (a) and (b) are fulfilled. So we know already about a subgroup of symmetry
transformations: the translations of phase space; they are implemented as local unitary
transformations in the Heisenberg–Weyl group W.

For general L the fulfilling of (b) implies the possibility of linearly extending L. It gives
then, due to (a), an invertible norm preserving linear map of the Euclidean space, spanned
by the Pk,�, onto itself. It affects a permutation of the Euclidean basis elements Pk,�, hence
a map T → T. In contrast, any permutation of this kind extends via mixing preserving to
a map W → W . Now, after any permutation of T a certain translation can bring the origin
(0, 0) back to its place. So each of the symmetry operations can be formed as a product of a
phase space translation with a certain point transformation M, which leaves the point (0, 0) at
its place.

The tool box of these point transformations of phase space contains the following:

• The ‘horizontal’ shear of phase space, H:
(
p

q

) → (
p

p+q

)
. Its powers form a cyclic

subgroup. The elements are represented by the matrices
(

1 0
n 1

)
. (In discrete classical

mechanics this is a free time evolution.)

• The ‘vertical’ shear of phase space, V:
(
p

q

) → (
p+q

q

)
. The elements of the generated

cyclic subgroup are represented by the matrices
(

1 n

0 1

)
. (It may be considered as a local

boost.)

• A quarter rotation of phase space, R :
(
p

q

) → (
q

−p

)
. It is represented by the matrix(

0 1
−1 0

)
. R2 = −11 is a point reflection.

• Squeezing, a scale transformation
(
p

q

) → (
r·p
s·q

)
, for r · s ≡ d + 1, possible for each r

relative prime to d.
• Reflections:

• inversion of momentum, S : p → −p,
• space reflection, q → −q,
• diagonal reflection, p → q, q → p.

Proposition 9. Consider a linear mapping T → T, defined as the application of a 2 × 2
matrix M with elements ∈ Zd and with det M = ±1. By extending it to a mapping W → W ,
it is E-compatible.

These matrices form the extended symplectic group Sp(2, Zd).

Proof. Addition and multiplication of the matrix elements is according to the rules of the
ring Zd . This defines the matrix multiplication. The unit matrix has det 11 = 1 and is also in
this set. Inverting a general element M is achieved with the mapping

M =
(

k m

� n

)
→ M−1 = ±

(
n −m

−� k

)
, (36)

with the sign equal to the sign of det M . So the matrices which are either symplectic, det M = 1,
or mirror symplectic, det M = −1, form a group. We establish now the three transformations
V,R,S as generating elements.

First, they generate H = R−1VR and all the powers V t ,Ht . The space reflection is
R−1SR, diagonal reflection RS = −R−1S and squeezing is RV−sHrVs . Multiplication
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by S maps symplectic to mirror symplectic matrices and vice versa. Consider a general
symplectic M. The condition det M = 1 can only then be true if k and m are relative prime.
Also k and � have no common divisor. (Letters denoting the matrix elements are placed as in
(36).) So there exist a t and an s, such that m + kt ≡ 0 and � + ks ≡ 0. One calculates

MHt =
(

k 0
� n + t�

)
, HsMHt =

(
k 0
0 n + t�

)
.

This matrix performs a squeezing. It can be represented as stated above. Multiplication by
H−s from the left and H−t from the right gives us back the matrix M.

To realize the E-compatibility we proceed as we did for d = 3. A general group element
M can be considered as a product of the three generating elements. For these we present the
operators C,UR, UV and use their products as UM . The E-compatibility of the generating
elements so infers the E-compatibility of M.

Now we construct for each generating group element M an operator ǓM ⊗ Ũ−1
M , either

unitary or anti-unitary. Its local action in the factor C
d on the left-hand side as ǓM transforms

the Weyl operators, unaffected by ŨM , as

UMWk,�U
−1
M = eiη(M,k,�)Wk′,�′ , (37)

when M maps (k, �) → (k′, �′). Some phase factors eiη may appear. Then we use operators Ũ

acting in C
d on the right-hand side. They are uniquely defined by the condition that Ǔ ⊗ Ũ−1

leaves the chosen Bell state vector �0,0 invariant. Its matrix elements in our preferred basis
are 〈s|Ũ |t〉 = 〈t |Ǔ |s〉. The joint action in the space W can now be calculated to give

Pk,� → (
ǓM ⊗ Ũ−1

M

)
Pk,�

(
Ǔ−1

M ⊗ ŨM

) = UMPk,�U
−1
M = Pk′,�′ . (38)

Now we look at an implementation of the generating elements as local transformations
of the Hilbert space. The reflection S can be implemented by complex conjugation in the
preferred basis

Č :
∑

s

ϕs |s〉 →
∑

s

ϕ∗
s |s〉.

This is a local anti-unitary operation. It acts onto the Weyl operators as

ČW̌k,�Č = W̌−k,�. (39)

Its anti-linear extension C is complex conjugation in the global Hilbert space,

CWk,�C = W−k,�, (40)

mapping SEP onto SEP. So S is E-compatible.
The other two generators are implemented by local unitaries, so the E-compatibility is

obvious. The quarter rotation R is implemented as UR = ǓR ⊗ Ũ−1
R by the local Fourier

transform:

ǓR : |s〉 → 1√
d

∑
t

w−st |t〉.

It acts onto the Weyl operators as

URWk,�U
†
R = w−k�W�,k. (41)

For implementing the vertical shear of phase space, V , one may choose any integer ν and
define

ǓV : |s〉 → w−s(s+d+2ν)/2|s〉.
For general dimension d we use the ordinary integers s ∈ {0, 1 . . . , d − 1} when calculating
the exponents. (In Zd dividing by 2 is well defined for odd d only.) For even d the half-integer
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powers of w have to be chosen consistently for all the odd s. This choice, e.g. wµ/2 = eiπµ/d ,
appears then also in the action onto the Weyl operators:

UVWk,�U
†
V = w�(�+d+2ν)/2Wk+�,�. (42)

�

Now this group of E-compatible point transformations is maximal, other transformations
do not have the compatibility property. The proof is given in section 8.

Some remarks on more subtleties: note that the implementations of the matrix group
elements M are not unique. There are four different groups of transformations of vectors
and operators involved. Transformations of vectors in C

d by ǓM , unitary transformations of
the operators as noted in (37).3 Then there are transformations by ǓM ⊗ ŨM of vectors in
the global Hilbert space, and the related transformations of the operators as noted in (38).
Only the last one gives a representation of Sp(2, Zd), when restricted to the Euclidean space
spanned by Pk,�. The others are ‘quantizations’, involving phase factors. There is moreover
the possibility of multiplying each UM by some Wj,r , and this gives a discrete set of different
implications.

The total group E of E-compatible transformations has, by the way, the structure of the
semidirect product Sp(2, Zd) � W of the extended symplectic group and the Heisenberg–
Weyl group. That is (see, for example, [W06]): the extended symplectic group gives an
automorphism of the normal subgroup W, as noted in (37). The group product in E is given
as

(UMWj,m) ∗ (ULWk,�) = (UM·Leiη(L,j,m)Wj ′+k,m′+�) (43)

when L maps (j,m) → (j ′,m′).

6. Witnesses and more symmetry

Entanglement witnesses have been introduced [T00] to detect the entanglement. Detection
can be either experimentally or theoretically. To prove theorem 14 we use them in that way,
to discern the entangled vertices of the enclosure polytope from the separable ones.

Here we reverse the point of view. ‘Witnesses’ are used to study the location of SEP, the
convex set of separable states. We define the set of structural witnesses,

SW := {K = K† �= 0|∀σ ∈ SEP : Tr(σK) � 0}. (44)

This set forms a convex cone of operators. SW ∪ {0} is the dual convex cone to
{αρ, α � 0, ρ ∈ SEP} and thus completely characterizes the location of SEP. Geometrically,
every structural witness defines a hyperplane in the Hilbert–Schmidt space of Hermitian
matrices ρ, which is a Euclidean space with dimension d4. The extremal rays of this dual
cone are tangential witnesses for density matrices ρ on the surface of SEP:

TW :=
⋃

ρ ∈ surface (SEP)

TWρ (45)

ρ ∈ surface (SEP): TWρ := {K ∈ SW|Tr(ρK) = 0}. (46)

Being interested in SEP restricted to a linear subspace of states, we may restrict the study
of witnesses onto a dual subspace. If the set of states is defined by invariance under the action
of a group G, the dual subspace is a set of witnesses which are also invariant. The details of

3 Some of the unitary transformations of operators appear as ‘gates’ in quantum computation, see e.g. [G99, GKP01].
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this argument have been presented for d = 3. There was no use of a special dimension and
we may take over the results from [BHN06]:

Theorem 10. Characterizing SEP∩W through witnesses is simplified by using the following
properties:

• SEP ∩ W is completely characterized by duality, using witnesses of the form K =∑
k,� κk,�Pk,�.

• Such an operator K is a witness, iff ∀ψ̃ ∈ C
d the operator∑

k,�

κk,�Wk,�|ψ̃〉〈ψ̃ |W−1
k,� (47)

is not negative.
• K is a tangential witness in some TWρ iff ∃|ϕ,ψ〉 such that∑

k,�

κk,�|〈ϕ|Wk,�|ψ̃〉|2 = 0 (48)

with |ψ̃〉 = ∑
s〈s|ψ〉∗|s〉. The state

ρ = 〈|ϕ,ψ〉〈ϕ,ψ |〉G (49)

is a boundary state of SEP and located in the tangential hyperplane, Tr ρK = 0. Here G
is the Abelian group of unitaries generated by (11 − Pk,�)/2. 〈 〉G denotes symmetrizing
by the ‘twirl’ operation concerning the group G.

Some states have more symmetry and the tangential witnesses can be found in some
even smaller set, showing the same symmetry as the state. Sometimes these extra symmetries
are given as subgroups of the inner symmetries of W which we analysed in section 5. The
simplest example concerns the isotropic witness, which is the optimal entanglement witness
for a Bell state. The elementary calculation may again be performed for general d as it is done
for d = 3. Sometimes external groups, mapping part of W to other states, have to be used.
We give one example.

Theorem 11. Concerning the subsection
{
ρ = ∑

k ckPk,0
}

of density matrices, the search
for witnesses can be reduced to

{
K = ∑

k κkPk,0 +
∑

� γ�Q�

}
, with Q� = ∑

k Pk,�/d and
γ−� = γ�.

Proof. As a first step we use the W-symmetry of space reflection � ↔ −�. This is an
invariance of the chosen states. Projecting K = ∑

k,� κk,�Pk,� onto an invariant operator by
the ‘twirl’ operation with this group G of two elements gives

〈K〉G =
∑
k,�

κ ′
k,�Pk,�, κ ′

k,� = 1

2
(κk,� + κk,−�). (50)

In the second step we use the group GU of local unitaries Ǔ ⊗ Ũ diagonal in the preferred
basis,

Ǔ : |s〉 → eiα(s)|s〉, Ũ : |t〉 → e−iα(t)|t〉.
We use the expansion

Pk,� = 1

d

∑
t,r

wk(t−r)|t − �, t〉〈r − �, r|, (51)
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and form the second projection by twirl onto operators invariant under this group,

〈〈K〉G〉GU =
∑
k,�

κ ′
k,�

1

d

∑
t,r

wk(t−r)〈|t − �, t〉〈r − �, r|〉GU . (52)

The invariant part involves

〈|t − �, t〉〈r − �, r|〉GU = 〈ei(α(t−�)−α(t)−α(r−�)+α(r))〉GU |t − �, t〉〈r − �, r|
= δ�,0|t, t〉〈r, r| + (1 − δ�,0)δt,r |t − �, t〉〈t − �, t |.

Inserting this equation and also (50) into (52) gives for the first term
∑

k κk,0Pk,0, for the
second term (1 − δ�,0)γ�Q� with γ� = 1

2

∑
k(κk,� + κk,−�). �

7. Partial transposition

PT can be used, referring to the Peres criterion, to prove entanglement. On the other hand, it
maps LMM ∩ PPT onto itself, see lemma 1. There is a PT-related subset Ŵ of LMM with
Ŵ ∩ PPT = W ∩ PPT: it is defined as the linear extension of PT(W ∩ PPT) to the borders of
positivity. The dimensions of these related subspaces are equal, dim(W) = dim(Ŵ) = d2 −1.
Studies on the structure of W are automatically studies on the structure of Ŵ . The two
pictures, figures 2 and 3, presented in [BHN06] for d = 3 can be seen in that way. The
region of PPT-matrices (not necessarily positive) becomes the region of states, i.e. positive
matrices, and vice versa. Their intersections are the PPT states—density matrices which are
both positive and PPT—in both points of view. The Peres criterion, SEP ⊂ PPT, implies that
also W ∩ SEP = Ŵ ∩ SEP. The cases of bound entanglement [HHH98] may therefore also
be seen in two ways. The regions of bound entanglement in W , e.g. those that we found for
d = 3, are in one-to-one correspondence to those in Ŵ .

PT of our simplex W has nice features, inferring simplification for calculations. We use
again the expansion (51) and observe that PT maps

|t − �, t〉〈r − �, r| → |m − t, t〉〈m − r, r| with m = t + r − �.

Splitting the global Hilbert space into subspaces according to the quantum number m allows
for a splitting of partial transposed W-states:

PT : ρ =
∑
k,�

ck,�Pk,� →
⊕

m

Bm, (53)

with Hermitian d × d matrices Bm,

〈s|Bm|t〉 = 1

d

∑
k

ck,s+t−mwk(s−t) = 〈t |Bm|s〉∗. (54)

Theorem 12. Consider the matrices Bm corresponding to some state in W according to (53):

• For odd d all Bm are unitarily equivalent.
• For even d there are two classes of mutually equivalent Bm, one for even m and the other

for odd m.
• If d is even, there is the relation of matrix elements for every Bm

〈s + d/2|Bm|t + d/2〉 = 〈s|Bm|t〉. (55)
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Proof. For any d observe

〈s|Bm−2|t〉 = 1

d

∑
k

ck,s+t−m+2w
k(s−t) = 〈s + 1|Bm|t + 1〉.

For d odd one shows 〈s|Bm−1|t〉 = 〈s + (d + 1)/2|Bm|t + (d + 1)/2〉 by observing
s + t − m + 1 ≡ [s + (d + 1)/2] + [t + (d + 1)/2] − m in the second index of c. For
even d, the equivalence s + t ≡ [s + d/2] + [t + d/2] implies (55). �

The last point has the consequence that, if d is even, each Bm has the form of a block
matrix (

C D

D C

)
∼= C ⊗ 11(2) + D ⊗ σx

∼= C + D

2
⊕ C − D

2
(56)

with Hermitian blocks Cm and Dm. 11(ν) is the ν × ν unit matrix.
Consider now the Abelian algebras

A(d) :=
{∑

k,�

ak,�Pk,�, ak,� ∈ C

}
∼= M0(d

2, C) (57)

emerging as a linear span of the special density matrices. Using theorem 12 and (56) the
results of mapping by PT are the following subalgebras of M(d2, C):

• If d is odd—PT: A(d) → M(d, C) ⊗ 11(d),
• If d is even—PT: A(d) → M(d/2, C) ⊗ M0(4, C) ⊗ 11(d/2).

A consequence is a simplification for checking whether a state in W is PPT or not.
These states are mapped to linear functionals of PT(A(d)), represented either, if d is odd, by
Hermitian matrices in M(d, C) or, if d is even, by four Hermitian matrices in M(d/2, C).

A further consequence is an insight into the structure of the state space Ŵ:

Theorem 13. The subset Ŵ of LMM is given by the intersection of PT(A(d)) with the set of
density matrices.

Only for d = 2 it is again a simplex—the reflected tetrahedron. For odd d it is the
state space consisting of Hermitian d × d density matrices—when the tensorial factor 11 is
neglected. For even d � 4 there are three-dimensional sections with the form of a tetrahedron
through every point in this (d2 − 1)-dimensional convex body. In other directions there exist
sections of dimension d2/4−1 with the structure of the state space with (d/2)× (d/2) density
matrices. The space of states for M(ν, C) is the convex set of normalized positive ν × ν

matrices. Every maximal face is equivalent to the set of normalized (ν −1)× (ν −1) matrices.
So its faces have dimension ν(ν − 2) at most. It follows that the surface of Ŵ is curved in
many directions, if d � 3. Part of the border of Ŵ is the border of PPT ∩ W . This border is
therefore also curved in many directions.

Both local unitary transformations and the global complex conjugation map PPT onto
itself. So the symmetries established in section 5 are symmetries of PPT ∩ W and of
Ŵ too. Also the witnesses for W can be transported to witnesses of Ŵ by PT. This
follows from the ‘self-adjointness’ of PT as a transformation in the Hilbert–Schmidt space:
Tr(PT[ρ]K) = Tr(ρPT[K]).

Finally, look at special LMM states in Ŵ . No Bell states are in Ŵ , if d � 3. There
is a set of Werner states instead, and Ŵ includes as many Werner states with some given
mixing as W contains Bell states: d2 of them are extremal with a density matrix which is a
(d(d − 1)/2)-dimensional projector. The set of maximally exposed LMM ∩ SEP states are
mapped by PT onto itself. Their number in Ŵ is thus again N(d), the same as in W , see
theorems 7 and 14.
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8. Optimality

We follow the second trail which aims at proving not to have overlooked anything.

Theorem 14. There is a one-to-one correspondence between the maximally exposed states
in SEP ∩ W and the lines or sublattices with d points, generated by Abelian subgroups of W.

Proof. One-half of this theorem is proven in proposition 6. On the other hand, SEP ∩ LMM
is inside the enclosure polytope. In the large space of Hermitian matrices, the extremal
points of this polytope lie at the intersections of the witness hyperplanes Bα and the positivity
borders Aβ , with α ∈ Q ⊂ T, β ∈ T\Q. Restricting the space to the space of normalized
matrices gives the condition |Q| = d. This is the condition to get those vertices of the
enclosure polytope which are inside of W . They all have exactly the same distance to ω as
the maximally exposed separable states. But not all of them are separable, only those where
Q is a line or a sublattice. For d prime this has been stated in [N06]. For general dimension d
we define

K = 11 − (1 + ε)
∑
α∈Q

Pα = 11 − (1 + ε)d · ρQ (58)

and claim that it is an entanglement witness if ε is small and if Q is not a line or a sublattice.
To prove this claim we have to show that ∀|ϕ,ψ〉 the expectation value of (58) is not negative,

〈ϕ,ψ |K|ϕ,ψ〉 � 0. (59)

With Pα = Wα|�0,0〉〈�0,0|W †
α one gets

〈ϕ,ψ |K|ϕ,ψ〉 = ‖ϕ‖2‖ψ‖2 − (1 + ε)
∑

α

|〈ϕ,ψ |Wα|�0,0〉|2. (60)

We insert definition (1) of �0,0:

〈ϕ,ψ |Wα|�0,0〉 = 1√
d

∑
s

〈ϕ|W̌α|s〉〈ψ |s〉 = 1√
d

〈ϕ|W̌α|ψ̃〉,

with |ψ̃〉 := ∑
s〈s|ψ〉∗|s〉. So we have to check the non-negativity of

‖ϕ‖2‖ψ̃‖2 − 1 + ε

d

∑
α∈Q

|〈ϕ|W̌α|ψ̃〉|2. (61)

Since Q is not a sublattice, the Weyl operators which appear in the sum do not all commute
with each other. That means W̌αW̌β = eiγ W̌βW̌α with eiγ �= 1 for some pairs of operators,
and there is no common eigenvector. For each pair of vectors there is at least one α such
that |〈ϕ|W̌α|ψ̃〉| < ‖ϕ‖‖ψ̃‖. There is only a finite number of operators and a compact set of
normalized vectors; one has equicontinuity and uniform boundedness,

∃ε > 0, s.t. ∀ϕ, ψ̃ :
∑
α∈Q

|〈ϕ|W̌α|ψ̃〉|2 < d · (1 − 2ε)‖ϕ‖2‖ψ̃‖2.

So the claim that K defined in (58) is a witness for some ε is proven:

〈ϕ,ψ |K|ϕ,ψ〉 > ‖ϕ‖2‖ψ‖2(ε − 2ε2). (62)

Since Tr KρQ = −ε, the state ρQ is shown to be entangled. �

Remark. The procedure connecting the expectations (60) with formula (61) is also used in
section 6, theorem 10.

In theorem 14 we have proved that the geometric symmetry of the kernel polytope is
smaller than that for the enclosure polytope. One implication is
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Lemma 15. Every E-compatible point transformation M must be a linear invertible mapping
T → T.

Proof. The set of kernel vertices has to be mapped onto itself. This set corresponds to the set
of lines and sublattices with exactly d points in the phase space T. Every pair of phase space
points lies on one line at least, many pairs on not more than one. Since the mappings are one
to one, each of these one-line-only pairs has to be mapped onto an equivalent one-line-only
pair. There are enough of them, like [(p, q), (p + k, q + 1)], to imply the linearity: every line
is mapped onto a line. �

We remark that invertibility of M means that the matrix

M−1 = (det M)−1

(
n −m

−� k

)

has to exist. This is only then the case if det M is coprime with d, excluding e.g. det M = 2
for d = 4 and det M = ±2 or 3 for d = 6.

Next we show that the geometric symmetry of the kernel polytope is still deceptive, if
d = 5 or d � 7.

Theorem 9. Consider a linear mapping T → T defined by applying a 2 × 2 matrix M
with elements ∈ Zd . Its extension to a mapping W → W is E-compatible if and only if
det M = ±1.

Proof. The first part is proven constructively in the proof of proposition 9. To prove the other
direction we use duality of convex cones. A linear mapping W → W is E-compatible iff the
dual transformation maps SW to SW and TW onto TW. The dual transformation, acting onto
witnesses, is given by the dual mapping of the set {κk,�} considered as an element of �2(T, R):

K =
∑

κk,�Pk,�, ρ =
∑

ck,�Pk,� ⇒ Tr Kρ =
∑

κk,�ck,�.

The dual mapping of T is therefore M−1, which is an element of Sp(2, Zd ) iff M is such a
matrix.

Consider now a line of tangential witnesses

K(ε) = λ(ε)11 + H + εP. (63)

The parameter λ is fixed through the conditions on K stated in theorem 10. They imply the
existence of normed vectors |ϕ,ψ〉 such that

〈ϕ,ψ |K|ϕ,ψ〉 = min
χ,η

〈χ, η|K|χ, η〉 = 0, (64)

and therefore

−λ(ε) = min
χ,η

〈χ, η|(H + εP )|χ, η〉. (65)

This situation is treated perturbatively. Let |ϕ(ε), ψ(ε)〉 be a differentiable curve of
vectors with |ϕ(0), ψ(0)〉 = |ϕ,ψ〉, the minimizers at ε = 0, with normalized vectors
ϕ(ε) = ϕ + εδϕ + O(ε2), ψ(ε) = ψ + εδψ + O(ε2). With

−µ(ε) = 〈ϕ(ε), ψ(ε)|(H + εP )|ϕ(ε), ψ(ε)〉
one gets

− d

dε
µ(ε)|ε=0 = 〈ϕ,ψ |P |ϕ,ψ〉 + [〈δϕ|Ȟψ |ϕ〉 + c.c.] + [〈δψ |H̃ϕ|ψ〉 + c.c.], (66)
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with the operators Ȟψ and H̃ϕ defined as quadratic forms in the local Hilbert spaces,

〈χ |Ȟψ |η〉 := 〈χ,ψ |H |η,ψ〉, 〈χ |H̃ϕ|η〉 := 〈ϕ, χ |H |ϕ, η〉.
We know from standard perturbation theory that the terms in square brackets in (66) are zero
if the ground states of the local Ȟψ and H̃ϕ are not degenerate.

For ε = 0 we choose

H =
∑

k

γkPk,0 γk = −(wk + w−k).

Using the expansion (51) and then 1
d

∑
k γkw

k(s−t) = δs,t−1 + δs,t+1 we get

〈ϕ,ψ |H |ϕ,ψ〉 = −
∑
s,t

ϕsψsϕ
∗
t ψ

∗
t (δs,t−1 + δs,t+1) (67)

= −2
∑

s

f (s)f ∗(s + 1), (68)

with f (s) := ϕsψs . The minimum of (68) is attained if all f (s) are real valued and positive.
Also ϕs and ψs can be chosen as positive. One step in minimizing (67) with the condition
‖ϕ‖ = ‖ψ‖ = 1 can be considered as equivalent to the reverse task of keeping f (s) fixed and
minimizing ‖ϕ‖ · ‖ψ‖. This gives ϕs = ψs and

∑
s f (s) = ‖ϕ‖2 = 1. Using this as a side

condition to minimize (68) one gets the minimizers: for d � 5 they are f (s) = 1
2 (δs,t + δs,t+1)

and f (s) = 1
2δs,t + 1

4 (δs,t−1 + δs,t+1) for any t. Defining ϕ = √
f and ψ = √

f one sees the
non-degeneracy of the ground states of the local operators Hψ and H̃ϕ . Using the ground state
vectors ϕs(ε) and ψs(ε) gives µ(ε) = λ(ε). Applying (66) results therefore in

− d

dε
λ(ε) |ε=0= 〈ϕ,ψ |P |ϕ,ψ〉. (69)

Choose ϕs = ψs = 1√
2
(δs,0 + δs,1), consider P = P0,1 and transformations by

M =
(

1 0
0 n

)
.

H(0) is invariant under this transformation, but the perturbative P0,1 changes to P0,n. The value
of (69) is changed, unless n = ±1, proving the non-invariance of TW. Using transformations
by symplectic matrices, every matrix M can be transformed to this diagonal form without
changing its determinant. So det M = ±1 is a necessary condition. �

9. Summary and outlook

The paper extends on previous work [BHN06] for qutrits, but here the results are stated in a
more mathematical context and are generalized to arbitrary Hilbert space dimensions d. We
consider the state space of two qudits and analyse a certain subset, the simplex (generalized
tetrahedron) W as the main object of our investigations. It is obtained starting from a certain
maximally entangled pure state, a Bell-type state. By applying on one side the Weyl operators
other orthogonal Bell-type states are formed, and the set of mixtures, the complex hull, is the
simplex W . The Weyl operators are related to a discrete classical phase space, representing
in turn the algebraic relations of the Weyl operators. This analogy enables us to describe
the local transformations of the quantum state space of interest and is very useful for several
proofs in this paper: transformations of W onto itself can be considered as transformations of
the discrete classical phase space. Thus, the symmetries and equivalences can be studied by
this means.

The simplex W is embedded in a d2-dimensional Euclidean space equipped with a norm
(the Hilbert–Schmidt norm) and an inner product. We analyse in detail the properties how it
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is embedded in the whole state space of two qudits and discuss symmetries and equivalences
inside the simplex W , its facets and witnesses. This is obtained via the Weyl group which is
a kind of ‘quantization’ of classical phase space.

Then we investigate the question of the geometry of separability. We start with the
construction of two polytopes, an inner (kernel polytope) and an outer (enclosure polytope)
fence for separability. They define entanglement witnesses but are in general not optimal. The
outer fence, the enclosure polytope, has the same geometric symmetry as W . Because we are
able to construct optimal entanglement witnesses explicitly we obtain in principle the border
between separable and entangled states, sometimes even in analytic form.

With our method we also find the set of bound entangled states of the parameter
subspace under investigation, by applying the partial transposition on one subsystem, which
detects entanglement via PPT. The obtained PPT witnesses are sometimes different from the
entanglement witnesses for the density matrices under consideration. We stated and explored
also a kind of ‘duality’ where the partial transposition maps PPT ∩ W to PPT ∩ Ŵ , where Ŵ
is another convex subset of LMM (the set of locally maximally mixed states), and the cases
of bound entanglement detected in W are also cases for bound entanglement in Ŵ .

Summarizing, we could present a detailed geometric structure of the subset of bipartite
qudits under investigation. We think that this will help to find a good characterization of
the whole state space and to investigate measures for entanglement for higher dimensional
systems.

In the outlook, we hope the paper advances our knowledge of these structures, of the
convex hull of higher dimensional generalizations of the two-qubit Bell states. These two-qubit
states have many applications in quantum information theory, and so their characterization for
higher dimension is a desirable research goal. The higher dimensional generalizations may
also have applications in quantum information and display interesting geometrical features
on their own. Since we show how to construct optimal witnesses explicitly and how to
determine regions where there is bound entanglement, i.e. entanglement which cannot be
distilled by local operation and classical communication (LOCC), these methods might be
useful in quantum cryptography. Regarding possible applications of our results and methods
in a wider context, we note that the quasiclassical structure also fits exactly into the conditions
needed for teleportation and dense coding, see e.g. [BW92, W01].

Furthermore, according to the opinion of one of the referees, due to the Choi-Jamiołkowski
isomorphism between a class of bipartite states and maps [ZB04] or channels [HHH98b]
one may infer from the results of the present paper further conclusions about the maps,
e.g. (bistochastic) superpositive maps, which correspond to separable states: using the
isomorphism (for a recent exposition, see e.g. [B06] or [L06]) we see that the states of
a d × d system satisfying one partial trace condition TrAρ = ωB represent stochastic maps
(completely positive, trace-preserving linear maps) while states satisfying simultaneously both
conditions TrAρ = ωB, TrBρ = ωA represent bistochastic maps. Hence, the set LMM for
bipartite systems is isomorphic to the set of bistochastic maps. See also [BDS01] for relations
to remote state preparation.

Last but not least, exploration of entanglement properties in still more detail, using the
high symmetry of the chosen sets of states, seems to be the nearest and next goal.
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